The Standard Model Prediction for the ν_{τ} Charged-Current Cross Section

Emily Maher

22 Feb. 2005

Introduction

- For Standard Model prediction, must know which region
 - Deep Inelastic Scattering treat quarks as essentially free particles
 - Not Deep Inelastic Scattering this would put the region between DIS and resonance production - not sure how to calculate this prediction

Check the Region

• If $Q^2 \ge 1$ (GeV)² and $W \ge 1$ GeV, the region is DIS, where:

$$Q^2 = -q^2 = -(k_{\nu_{\tau}} - k_{\tau}')^2 \tag{1}$$

where $k_{\nu_{\tau}}$ is the four-momentum of the ν_{τ} and k'_{τ} is the four-momentum of the τ lepton.

and

$$W = (P_{N} \cdot q) = P_{N}^{2} + q^{2} + 2P \cdot q \tag{2}$$

where P_{N} is the four-momentum of the nucleon and q is defined above.

Using the fact that $P^2 = M_N^2$, $q^2 = -Q^2$ and $P \cdot q = 2M_N \cdot \nu$ where $\nu = (E_\nu - E_\tau)$:

$$W = (P_n \cdot q) = M_n^2 + 2M_N \cdot \nu - Q^2$$
 (3)

First I must calculate Q^2 . To calculate Q^2 , put it in terms of quantities we can measure:

$$(k_{\nu_{\tau}} - k_{\tau}')^2 = k_{\nu_{\tau}}^2 + k_{\tau}'^2 - 2(k_{\nu_{\tau}} \cdot k_{\tau}') \tag{4}$$

where

$$k_{\nu_{\tau}} \cdot k_{\tau}' = E_{\nu_{\tau}}(E_{\tau} - p_{\tau} \cos \theta) \tag{5}$$

Then

$$Q^{2} = m_{\tau} - 2(E_{\nu_{\tau}}(E_{\tau} - p_{\tau}\cos\theta))$$
 (6)

So we need an estimate of the tau neutrino's energy

Estimating Energy of ν_{τ}

 $E_{\nu_{\tau}}$ is estimated using p_{τ} , the angle of the tau wrt the neutrino, θ , and the vector sum angle of the other tracks wrt to the neutrino, ϕ , and conservation of momentum.

The z-component of momentum is conserved:

$$p_{\nu_{\tau}} = p_{\tau} \cos \theta + p_W \cos \phi \tag{7}$$

and the transverse component is conserved:

$$0 = p_{\tau} \sin \theta - p_W \sin \phi \tag{8}$$

First solve for p_W :

$$p_{\tau} \sin \theta = p_W \sin \phi \tag{9}$$

$$p_W = \frac{p_\tau \sin \theta}{\sin \phi} \tag{10}$$

Then

$$p_{\nu_{\tau}} = p_{\tau} \cos \theta + \frac{p_{\tau} \sin \theta}{\sin \phi} \cos \phi \qquad (11)$$

$$p_{\nu_{\tau}} = p_{\tau} \cos \theta + p_{\tau} \frac{\sin \theta}{\tan \phi} = E_{\nu_{\tau}}$$
 (12)

Conclusions

- From the data for each tau candidate, p_{τ} and $\sin\theta$ are measured. $\sin\phi$ can be calculated using the angles of the non-tau tracks.
- Currently I am gathering this data. I will have results for next meeting.